

MUTAH UNIVERSITY Faculty of Engineering Department of Chemical Engineering

Principles of Instrumental Analysis Course Syllabus

Course Code	Course Name	Credits	Contact Hours
0404455	Principles of Instrumental Analysis	3	

INSTRUCTOR/COORDINATOR					
Name Eng.Bahia Maitah					
Email Bahia_76@mutah.edu.jo					
Website					

ТЕХТВООК

Principles of Instrumental Analysis, Skoog, Holler, Nieman, Sixth Ed.

Other Supplemental Materials

Quantitative Chemical Analysis, Daniel Harris, 8th Edition. Fundamentals of Analytical Chemistry, Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch. Ninth Ed.

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

This course aims to introduce students to modern methods used in instrumental analysis. It includes: Sampling, Calibration, Standardization, UV, AAS, GC, HPLC, IC.

B. Pre-requisites (P) or Co-requisites (C)

0404437 (P)

C. Course Type (Required or Elective)

Required (Compulsory department course)

SPECIFIC GOALS

A. Specific Outcomes of Instruction

1. Understanding the steps associated with the identification and quantification of an analyte in the sample. [SLO 1 2,6]

2.Understanding the criteria used for selecting a particular sampling method. [SLO 1,2]

2. Understanding the criteria used for selecting a particular instrumental method. [SLO 1,2]

3. Understanding the principles behind making a qualitative and quantitative measurement in

some commonly used instrumental methods. (UV, AAS, GC, HPLC, IC) [SLO 1,2]

4. Understand the basic operation of each class of instrument and the chemical or physical property they measure. [SLO 1,2]

5. Understanding the advantages and disadvantages of these methods for a particular sample. [SLO 1,2,6]

6. Be able to suggest suitable instrumental methods for selected analytical problems. [SLO 1,2]

7. Use the literature to investigate the development of instrumental methods for specific sample types. [SLO 1,2,6]

B. Student Outcomes Addressed by the Course									
	1	2	3	4	5	6	7		
	✓	✓				~			

BRIEF LIST OF TOPICS TO BE COVERED					
List of Topics	No. of Weeks	Contact Hours			
Atomic Absorption Sample Atomization Techniques Atomic Absorption Instrumentation. Interferences in Atomic Absorption Spectroscopy. Atomic Absorption Analytical Techniques	1,2,3	9 hours			
Ultraviolet-Visible Molecular Absorption Spectrometry Measurement of Transmittance and Absorbance. Beer's Law. The Effects of Instrumental Noise on Spectrophotometric Analyses. Instrumentation.	4,5,6	9 hours			
An Introduction to Chromatographic Separations General Description of Chromatography Migration Rates of Solutes Band Broadening and Column Efficiency Optimization of Column Performance Summary of Chromatographic Relationships Applications of Chromatography	7,8	6 hours			
Gas Chromatography Principles of GLC	9,10,11	9 hours			

Instruments for GLC Gas Chromatographic Columns and Stationary Phases Applications of GC Advances in GC Gas-Solid Chromatography High-Performance Liquid Chromatography Scope of HPLC	12,13,14	9 hours
Column Efficiency in LC		
Instrumentation		
Partition Chromatography		
Adsorption Chromatography		
Ion Chromatography		
Size-Exclusion Chromatography		
Affinity Chromatography		
Thin-Layer Chromatography		
Total	14	42 hours

METHODS OF ASSESSMENT						
No.	Method of assessment	Week and Date	%			
1	First Exam	6th week	25			
2	Second Exam	9th week	25			
3	Final Exam	End of Semester	50			
	100					